June 10, 2013
I always get suspicious when someone makes an argument with the statement of “it’s been proven to work”, “the link is proven”, or, alternatively, they state some negative about scientifically supported therapies. Typically, I hear these kinds of statements fr om the pseudoscience pushing crowd. For example, real science has debunked the “there is a proven link between vaccines and autism,” a common and popular pseudoscientific belief. Or that most alternative medicine (CAM) therapies work based on numerous logical fallacies that suspends reason, and accepts “belief” in the therapy, something that evidence-based medicine just doesn’t do.
So, I decided to put together a rather substantial treatise on science vs. pseudoscience. We’ll explore what exactly makes an idea scientific (and spoiler alert, it isn’t magic), and contrary to real science, what makes an idea “pseudoscientific.” So sit down, grab your favorite reading beverage, because this isn’t going to be a quick internet meme. I intend to show you exactly how pseudoscience, whether it’s creationism, vaccine denialism, alternative medicine, or whatever you want to debunk, lies. Yes, lies.
The scientific method
Science rarely uses the term “proven”, because the scientific method is not a system to make a definitive answer on any question–scientists always leave open the possibility of an alternative hypothesis that can be tested. If the alternate hypothesis can be supported through experimentation, then it can replace the original one. When an alternative medicine or junk science supporter states “it has been proven,” ask wh ere is the evidence. What is more troubling is that someone who believes in these therapies cannot imagine that they don’t work, what is called falsification, which is a hallmark of good science. Whenever I hear that a scientist say, “we were wrong, it doesn’t work,” my retort is “excellent, good science.”
The scientific method is an unbiased systematic approach to answer questions about the natural world, including medicine. It has several basic steps:
- Define the question–this could be anything fr om “does this compound have an effect on this disease?” or “how does this disease progress?”
- Observations–this is the subjective part of science. Do we observe trends or anomalies? Does a physician notice that every patient from a town or neighborhood exhibit the same disease? A lot of science arises from observations of the natural world, and yes, some of those observations can be anecdotes or personal observations. For example, one of the most famous stories in the early history of medicine is when Edward Jenner observed that milkmaids rarely were infected by smallpox because they were exposed to cowpox, a less virulent disease.
- Hypothesis–taking the observations, create a hypothesis that can be tested. In Jenner’s case, he hypothesized that exposure to cowpox immunized individuals to small pox.
- Experiment–simply, the scientist then tests the hypothesis with experiments and collect the data. The experiments are not designed to solely validate the hypothesis but may also attempt to contradict it.
- Analyze–this requires statistics to determine the significance or results.
- Interpret–sometimes the data leads to a revision of the hypothesis, which means the scientist has to return to steps 3-6. Or it confirms or supports the hypothesis, which means the researcher can move to Step 7.
- Publish results–in today’s scientific community, the results require peer-review, which subjects the data, analysis and interpretation to the scrutiny of other scientists before publication. This is a critical step that ensures that the results can stand up to criticism. It does not prove anything, but it does support the hypothesis.
- Retesting–Many times the research is repeated by others, or the hypothesis may be slightly revised with additional data. Science is not static, it constantly revises theories as more data is gathered. For this reason alone, science is not an absolute, it is constantly seeking new data.
Complementary and Alternative Medicine (called CAM), for example, fails to utilize scientific method. Supporters of CAM usually perform experiments to confirm the hypothesis, never to contradict it. It is the fundamental principle of falsifiability, that is, that if a hypothesis is false, it can be shown in experimentation that allows science to have an open mind about the world. When you speak to a believer of CAM, they almost never assume that their treatment cannot work.
It’s interesting that CAM and pseudoscience start out with observations of the real world. For example, CAM therapies sometimes show positive results, not because of the therapies themselves, but because humans just get better from many diseases. So, these CAM therapies rely upon Confirmation Bias, that is, the tendency to accept information that supports your beliefs, or even Post hoc ergo propter hoc, a logical fallacy which says “since that event followed this one, that event must have been caused by this one.” Humans too often conflate correlation and causation. Just because events follow one another, that doesn’t mean one causes the other. I suppose that’s how superstitions arise.
The “pseudoscientific method”
To identify pseudoscience, there are six reliable clues that shout out “pseudoscience.” Almost always, you can find all six in any pseudoscientific claim.
1. Use of vague, exaggerated or untestable claims. Essentially, pseudoscience makes “scientific claims” that are vague and variable, rather than precise, with statistical analysis, found with specificity of scientific research. It also fails to make use of of variables, terms and other information so that an independent researcher can repeat or test the claims. Pseudoscience lacks boundary conditions (well-supported scientific ideas possess well-described lim itations under which the prediction of results do and do not apply); lacks effective controls, such as utilizing placebos and double-blind experiments; and the lack of understanding of basic and established principles of physics and engineering. Importantly, pseudoscience lacks parsimony, sometimes referred to as Occam’s razor, that is ,failing to seek an explanation that requires the fewest possible additional assumptions when multiple viable explanations are possible. Finally, it uses language, and use of apparently technical jargon in an effort to give claims the superficial trappings of science.
2. Extreme reliance on confirmation rather than refutation. Pseudoscience relies upon assertions that do not allow the logical possibility that they can be shown to be false by observation or physical experiment, a concept called falsifiability. In other words, real science assumes that there could be an experiment designed that would refute (or nullify) the hypothesis. Pseudoscience also asserts claims of predictability when it has not been shown to have that claim; “scientific” claims that do not confer any predictive power are considered at best “conjectures”, or at worst “pseudoscience”. Pseudoscience also makes the assertion that claims which have not been proven false must be true, and vice versa, which also known as the Argument from Ignorance. Pseudoscience is also over reliant on testimonial, anecdotal evidence, or personal experience. Yes, this type of evidence can be used as observations to develop a hypothesis. But they cannot be used to test the hypothesis itself. Pseudoscience also overuses confirmation and selection bias in the presentation of data that seems to support its claims, in the meantime, suppressing or refusing to consider data that conflict with its claims. In real science, the burden of proof rests on those making a claim, not on the critic. Pseudoscience employs the reversed burden of proof, demanding that skeptics demonstrate beyond a reasonable doubt that a claim, for example, that some supplement prevents cancer, is false. It is essentially impossible to prove a universal negative, so this tactic incorrectly places the burden of proof on the skeptic rather than the claimant. Finally, pseudoscience appeals to holism as opposed to to reductionism :proponents of pseudoscientific claims, especially in alternative medicine, homeopathy, naturopathy and mental health, often resort to the “mantra of holism” to dismiss negative findings.
3. Lack of openness to testing by other experts. Pseudoscience researchers evade peer review before publicizing results, occasionally using press conferences to share their ideas. These “researchers” will claim that their ideas contradict the scientific consensus, so they must avoid the peer review process because that process is biased towards the established paradigms and consensus. They will also claim that their results cannot arrive from the scientific method. Thus, they get to avoid the feedback of informed colleagues. They will also appeal to the need for secrecy or proprietary knowledge when an independent review of data or methodology is requested. Of course, many agencies and institutions that fund real science research require authors to share data so it may be evaluated independently.
4. Absence of progress. Pseudoscience usually fails to progress towards providing or even searching for additional evidence of its claims. Astrology is an example of a pseudoscientific concept that has not changed in 2000 years. Real science is constantly adding data through scientific progress. Moreover, statistical significance of experimental results, that supposedly supports the pseudoscientific claim, does not improve over time and are usually close to the cutoff for statistical significance. Normally, experimental techniques improve as the experiments are repeated, and this gives ever stronger evidence to a scientific principle or hypothesis. If statistical significance does not improve, this typically shows the experiments have just been repeated until a success occurs due to chance variations.
5. Personalization of issues. Pseudoscience is often composed of closely tied social groups, and usually includes an authoritarian personality, suppression of dissent, and groupthink. This social construct can enhance the adoption of beliefs that have no rational basis. In an attempt to confirm their beliefs, the group tends to identify their critics as enemies. They also make assertions of claims of a conspiracy on the part of the scientific community to suppress results that support the pseudoscience. Finally, they attack the motives or character of anyone who questions the claims, the Argumentum Ad Hominem. As an example, the anti-vaccine crowd has invented numerous claims about Dr. Paul Offit, one of the great researchers in vaccines, just to attack him personally. They’ve done the same with Bill Gates.
6. Use of misleading language. They try to create scientific-sounding terms to add weight to claims and persuade non-experts to believe statements that may be false or meaningless; for example, a long-standing hoax refers to water by the rarely used formal name “dihydrogen monoxide” and describes it as the main constituent in most poisonous solutions to show how easily the general public can be misled. More often, pseudoscientists use established technical terms in idiosyncratic ways, thereby demonstrating unfamiliarity with mainstream work in the discipline.